soal 8.5




1. Tujuan [Kembali]

  • Mampu mengaplikasikan mux demux kedalam rangkaian percobaan
  • Mempelajari simulasi rangkaian aplikasi
  • Mempelajari prinsip kerja rangkaian aplikasi

2. Alat dan Bahan [Kembali]

-Multiplexer CMOS 4052


-Encoder 74LS147

   

-Logic State

Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.

-7 Segment



                             

Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

-Ground


Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak balik atau titik patokan (referensi) dari berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.

Dalam Elektronika, ground yang dimaksud adalah ground semu (boleh juga nanti dihubungkan dengan ground sesungguh nya untuk pengamanan terhadap setrum).

Yang dimaksud titik "ground semu" adalah titik tersebut dihubungkan dengan body alat elektronik yang terbuat dari logam sehingga semua komponen di dalamnya tertutupi oleh ground semu itu.

Dengan cara ini jika ada (dan pasti ada) gelombang elektromagnetik dari udara sekitarnya tidak masuk ke alat elektronik kita.

Ground pada elektronik berfungsi sebagai:

1.Sebagai proteksi peralatan elektronik atau instrumentasi sehingga dapat mencegah kerusakan akibat adanya bocor tegangan.

2.Grounding di dunia eletronika berfungsi untuk menetralisir cacat (noise) yang disebabkan baik oleh daya yang kurang baik, ataupun kualitas komponen yang tidak standar.
Simbol Grounding Listrik

Sama seperti kebanyakan istilah dalam dunia kelistrikan sering terdapat simbol yang berbeda beda di tiap negara begitupun juga dengan simbol grounding listrik yang terdapat beberapa yang umum digunakan. Pada peralatan kelistrikan tentunya kita tidak jarang melihat ikon simbol dibawah ini bukan.


Simbol grounding

Kesemuanya adalah sama yaitu sebagai simbol grounding listrik. Fungsi dari simbol ini tentu saja banyak sekali misalnya saat proses gambar teknik instalasi listrik, proses pembangunan gedung, troubleshooting pada saat terjadi kegagalan ataupun maintenance instalasi listrik.

-VCC

Spesifikasi:5V

VCC menunjukkan pin yang harus disambung ke tegangan positip (biasanya 5V atau 3.3V)

Pada awalnya VCC muncul ketika berbicara tentang rangkaian yang melibatkan transistor, khsusunya Bipolar Junction Transistor. Komponen-komponen elektronik aktif hampir selalu memiliki transistor di dalamnya. Sebuah IC (Integrated Circuit) bisa terdiri dari jutaan atau bahkan milyaran transistor di dalamnya.

Sebuah transistor memiliki 3 kaki yaitu Collector, Base dan Emiter. VCC menyatakan tegangan (Voltage) pada kaki Collector. Jadi istilah VCC pada awalnya merujuk kepada tegangan di Collector ini. Sedangkan tegangan pada Emiter disebut VEE. Dan di kaki Base adalah ground.

Istilah VCC dan VEE ini terus terbawa sampai sekarang bahkan kepada komponen yang tidak mengandung transistor sekalipun. VCC menyatakan power supply positif sedangkan VEE menyatakan power supply negatif. Sedangkan ground adalah netral (0 V). Kebanyakan kasus kita hanya menemukan VCC dan Ground.

Berapakah nilai VCC? tergantung spesifikasinya bisa +3.3V, +5V, +9V atau +12V dan VEE bisa -3.3V, -5V, -9V atau -12V.

Oleh karena itu SANGAT PENTING untuk membaca spesifikasi VCC ini, jika salah bisa berisiko rusaknya komponen arduino kita.

Sebetulnya selain VCC dan VEE ada juga VDD dan VSS. Kalau VCC dan VEE ditemui pada transitor jenis bipolar (BJT), VDD dan VSS ada di transistor jenis FET (Field Effect Transistor). VDD (Drain) sama seperti VCC menyatakan power positif sedangkan VSS (Source) menyatakan power negatif.

-Gerbang AND

       

Gerbang AND (IC 4081) memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan menghasilkan Keluaran (Output) Logika 1 jika semua masukan (Input) bernilai Logika 1 dan akan menghasilkan Keluaran (Output) Logika 0 jika salah satu dari masukan (Input) bernilai Logika 0.

Konfigurasi pin : 

      -  Pin 7 adalah suplai negatif

      -  Pin 14 adalah suplai positif

      - Pin 1 & 2, 5 & 6, 8 & 9, 12 & 13 adalah input gerbang

       - Pin 3, 4, 10, 11 adalah keluaran gerbang

Spesifikasi  :

    - Catu daya : 3 V - 15 V
    - Fungsi : Quad 2-Input AND Gate
    - Propagation delay : 55 ns
    - Level tegangan I/O : CMOS
    - Kemasan : DIP 14-pin

-Gerbang NOT

Gerbang NOT sering juga disebut sebagai rangkaian inventer (pembalik). Tugas rangkaian NOT (pembalik) ialah memberikan suatu keluaran yang tidak sama dengan masukan.

-Transistor NPN

Spesifikasi :

Transistor Polarity                            NPN
Collector Emitter Voltage V(br)ceo            30V
Transition Frequency Typ ft               -
DC Collector Current            800mA
Power Dissipation Pd            500mW
DC Current Gain hFE            100
Operating Temperature Range            -
Transistor Case Style            TO-18
No. of Pins            3
MSL                -   

Konfigurasi PIN :

1. Emitter

2. Base

3. Collector

- Resistor


Spesifikasi :

Resistance (Ohms)          : 220 V

Power (Watts)                     : 0,25 W, ¼ W

Tolerance                             : ± 5%

Packaging                           : Bulk

Composition                       : Carbon Film

Temperature Coefficient : 350ppm/°C

Lead Free Status               : Lead Free

RoHS Status                        : RoHs Complient

 
- Relay


 A. Spesifikasi :

  • Trigger Voltage (Voltage across coil) : 5V DC
  • Trigger Current (Nominal current) : 70mA
  • Maximum AC load current: 10A @ 250/125V AC
  • Maximum DC load current: 10A @ 30/28V DC
  • Compact 5-pin configuration with plastic moulding
  • Operating time: 10msec Release time: 5msec
  • Maximum switching: 300 operating/minute (mechanically)
 B. Konfigurasi Pin :
 

Nomor PIN

Nama Pin

Deskripsi

1

Coil End 1

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground

2

Coil End 2

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground

3

Common (COM)

Common terhubung ke salah satu Ujung Beban yang akan dikontrol

4

Normally Close (NC)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu

5

Normally Open (NO)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu

 
-Diode


- Battery (Power Supply)

Spesifikasi:

Sistem Kimia: Zinc-Manganese Dioxide (Zn / MnO2)

Penunjukan: ANSI 1604A, IEC-6LF22 atau 6LR61

Tegangan Nominal: 12 volt

Suhu Operasi: -18 ° C hingga 55 ° C

Berat Khas: 45 gram

Shelf Life: 5 tahun pada 21 ° C

Terminal: Jepretan Miniatur

- Generator DC


Spesifikasi:
  • Speed : 2750 rpm
  • Output : DC 12V
  • Arus : 35A
  • Built-in regulator
- Motor DC


Spesifikasi:

–Stepper motor tipe bipolar yang bekerja pada tegangan 9V.
– Tipe: bipolar.
– Kondisi: refurbished, sudah diuji @ 9V.
– Tegangan kerja: 12V (new-rated), 259mA.
– Resolusi: 7,5º/step (full step).
– Torsi: 38,2 mN.m (new-rated).

Konfigurasi pin


- Op-Amp

Spesifikasi:
  • Supply tegangan ±18V
  • Perbedaan tegangan input daya adalah ±15V
  • Rasio penolakan mode umum adalah 90dB
  • Amplifikasi tegangan diferensial adalah 200V/mv
  • Arus supply adalah 1.5mA
  • Pin ini dapat diakses dalam berbagai paket seperti paket 8-Pin PDIP, VSSOP, & SOIC
spesifikasi pin:

1. Pin1 & Pin5 (Offset N1 & N2) : Pin untuk mengatur tegangan offset jika perlu

2. Pin2 (IN-) : Pin inverting dari Op Amp

3. Pin3 (IN +) : Pin Non inverting Op Amp

4. Pin4 (Vcc-) : Pin ini terhubung ke ground jika tidak rel negatif

5. Pin6 (Output) : Output daya pin Op-amp

6. Pin7 (Vcc +) : Pin ini terhubung ke + ve rail dari supply tegangan

7. Pin8 (NC) : Tidak ada koneksi

- Potentiometer
Potensiometer - Wikipedia bahasa Indonesia, ensiklopedia bebas
Spesifikasi:

Resistansi = 10 K Ohm
Toleransi resistensi = ± 5%
Suhu kerja = -55 ° _-+ 125 °
Rotasi Life = 10,000,000 Shaft
Mekanik Perjalanan = 360 ° + 10 °-0 °


-Sensor Flame

Spesifikasi :
- Jangkauan spektrum : 760 - 1100 (nm)
- Sudut yang terdeteksi : 0° - 60°
- Catu Daya : 3,3V - 5,3V
- Temperatur Kerja : -25°C sampai 85°C
- Dimensi : 27,3 x 15,4 (mm)


- Sensor MQ2




3. Dasar Teori [Kembali]

Multiplexer CMOS 4052

Multiplexer adalah perangkat yang mengubah n input (banyak input) menjadi satu output. Cara kerja Mux atau multiplexer ini yaitu dengan memilih salah satu inputan dari beberapa sinyal input analog maupun digital untuk diteruskan ke jalur output.

Didalam perangkat multiplexer terdapat terminal yang bernama ‘select input’ yang bertugas untuk memutuskan terminal input mana yang akan dipilih untuk dikirimkan kedalam satu jalur output.

Pada era digital yang mana seluruh teknologi informasi semakin maju, maka tidak heran apabila multiplexer sangat maju untuk urusan komponen penting yang digunakan dalam meraih informasi dengan cepat. Alat ini sangat wajib untuk dimiliki oleh beberapa perangkat elektronik tertentu.

Komponen ini biasanya ditemukan pada sebuah komputer agar bisa melakukan perintah yang diinginkan oleh operator. Biasanya, alat yang satu ini juga biasa disebut sebagai Mux untuk istilah singkatnya. Berikut adalah klasifikasi dari alat ini:
  • 2-1 Mux (1 baris)
  • 4-1 Mux (2 baris)
  • 8-1 Mux (3 baris)
  • 16-1 Mux (4 baris)
Jika multiplexer adalah sebuah rangkaian yang digunakan untuk menjalankan perintah dari seorang operator komputer, maka ada istilah lain yang juga tidak boleh dilupakan begitu saja. Istilah tersebut dinamakan sebagai demultiplexer.

Kedua komponen ini seringkali berhubungan dan selalu disandingkan antara satu sama lain sehingga perintah yang dimasukkan bisa dilanjutkan pada komponen yang lain. Pada demultiplexer, tersedia banyak jalur output dan hanya satu jalur input. Berikut ini adalah klasifikasi demultiplexer:
  • 1-2 Demultiplexer (1 baris)
  • 1-4 Demultiplexer (2 baris)
  • 1-8 Demultiplexer (3 baris)
  • 1-16 Demultiplexer (4 baris)
Fungsi Multiplexer

multiplexer adalah

Fungsi multiplexer yang utama adalah sebagai perangkat yang menggabungkan beberapa sinyal input menjadi satu aliran data yang akan dikirimkan kedalam satu jalur output.

Dalam kehidupan sehari-hari multiplexer biasanya digunakan terhadap beberapa aplikasi yang begitu berguna untuk membantu pekerjaan. Bahkan tanpa adanya alat ini, bisa dibilang kita pasti akan merasa kesulitan dalam bekerja.

Karena itu, pastinya kita merasa bersyukur akan ditemukannya alat yang begitu canggih ini. Ini dia beberapa fungsi multiplexer yang diaplikasikan pada beberapa peralatan elektronika:
  • Jaringan Telepon
Pada jaringan telepon, Mux digunakan untuk mengintegrasikan sinyal audio. Proses ini dilakukan pada satu jalur transmisi.
  • Sistem Komunikasi
Mux juga digunakan dalam sistem komunikasi sebab sistem ini menerapkan jaringan komunikasi dan sistem transisi. Alat ini dipakai untuk meningkatkan sistem komunikasi agar bisa menjadi lebih efisien, sehingga memungkinkan untuk mengirim data seperti video dan audio dari saluran yang berbeda.

Rangkaian Multiplexer

Dilansir dari jurnal Pens.ac.id, sebuah rangkaian Mux atau multiplexer terkadang cukup kompleks dan perlu ilmu pengetahuan khusus untuk memahaminya. Akan tetapi, bagi yang sudah familiar dengan sistem output dan input komputer mungkin tidak terlalu bingung dengan hal ini.

Secara umum, rangkaian tersebut disusun dengan sedemikian rupa agar transmisi data bisa menjadi lebih efisien. Dengan begitu, maka proses transfer informasi pun bisa dilakukan dengan lebih cepat. Biasanya, dasar rangkaian ini terbentuk atas hal berikut:
  • Output berlawanan dengan input
  • Input memiliki nilai sama dengan output
a. Rangkaian Multiplexer 4×1
gambar multiplexer 4x1
gambar multiplexer 4×1
Untuk jenis rangkaian Multiplexer 4×1 ini memiliki empat jenis sinyal inputan yakni I0 , I1, I2, dan juga I3. dengan dua buah jalur seleksi s1 & s0 yang menggunakan satu jalur output Y. Untuk diagram rangkaian Multiplexer 4×1 ini bisa anda lihat pada gambar rangkaian multiplexer diatas.

Dari empat sinyal inputan diatas, salah satu input akan dipilih dan diteruskan ke jalur output berdasarkan kombinasi inputan yang terdapat pada dua jalur seleksi. Lebih jelasnya bisa anda lihat pada tabel kebenaran multiplexer 4×1 dibawah ini :
Jalur SeleksiOutput
S1S0Y
00I0
01I1
10I2
11I3

Berdasarkan tabel kebenaran multiplexer diatas, didapatkan persamaan fungsi bolean untuk sinyal output, dengan Y sebagai :

rumus multiplexer 4x1

Dari persamaan fungsi bolean diatas, bisa kita aplikasikan menggunakan inverter gerbang logika And dan juga OR yang nantinya akan membentuk diagram rangkaian multiplexer 4×1 dibawah ini :

gerbang logika multiplexer

b. Rangkaian Multiplexer 8×1

Perangkat Multiplexer 8×1 memiliki 8 buah sinyal input data, 3 jalur seleksi dan juga satu jalur output. Sehingga dalam pembuatan rangkaiannya kita membutuhkan dua Multiplexer 4×1 dan juga satu buah Multiplexer 2×1.

Kita asumsikan Multiplexer 8×1 memiliki delapan sinyal input data yakni inputan I0 sampai I7, dengan tiga buah jalur seleksi S0 sampai S2 dan satu jalur output Y. Untuk memudahkannya, silahkan teman teman lihat pada tabel kebenaran multiplexer 8×1 dibawah ini :
Jalur SeleksiOutput
S2S1S0Y
000I0
001I1
010I2
011I3
100I4
101I5
110I6
111I7
Berdasarkan tabel kebenaran Multiplexer 8×1 diatas, kita dapatkan Blok Diagram Mux 8×1 dibawah ini :

multiplexer 8x1

Merujuk pada blog diagram multiplexer 8×1 diatas, kita dapatkan garis seleksi yang sama. S1 & S0 diterapkan pada kedua Multiplexer 4×1.

Input data Multiplexer 4×1 atas adalah I7 hingga I4 dan input data Multiplexer 4×1 bawah adalah I3 hingga I0. Dari situ kita tahu bahwa pada tiap Multiplexer 4×1 menghasilkan output berdasarkan nilai garis seleksi, s1 & s0.




-Encoder 74LS147

Encoder adalah kebalikan dari decoder, encoder 10 line (desimal) ke BCD 74147 adalah sebuah chip IC yang berfungsi untuk mengokdekan 10 line jalur input (desimal) menjadi data dalam bentuk BCD (Binary Coded decimal). IC encoder 74147 merupakan encoder data desimal menjadi data BCD dengan input aktif LOW dan output 4 bit BCD aktif LOW. Encoder desimal ke BCD ini sering kita perlukan pada saat perancangan suatu perangkat digital dan kita mengalami kekurangan port atau jalut untuk input saklarnya. IC encoder 74147 merupakan IC dalam keluarga TTL yang bekerja dengan tegangan sumber + 5 volt DC. Konfigurasi pin dan tabel kebenaran dari encoder TTL 10 line (desimal) ke BCD IC 74147 dapat dilihat pada gambar berikut. Konfigurasi Pin Dan Tabel Kebenaran Encoder 74147


- 7 Segment


Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

-Logicstate

Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.  

Logicstate yaitu pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

Karena hanya dua status logika, logika 1 dan logika 0, yang dimungkinkan, teknik aljabar Boolean dapat digunakan untuk menganalisis rangkaian digital yang melibatkan sinyal biner. Istilah logika positif diterapkan ke sirkuit di mana logika 1 ditetapkan ke level tegangan yang lebih tinggi; Dalam rangkaian logika negatif, logika 1 ditunjukkan dengan level tegangan yang lebih rendah.

Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :

  • HIGH (tinggi) dan LOW (rendah)
  • TRUE (benar) dan FALSE (salah)
  • ON (Hidup) dan OFF (Mati)
-Relay

Relay merupakan komponen elektronika berupa saklar atau switch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.
Prinsip Kerja Relay

Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
1.Electromagnet (Coil)
2.Armature
3.Switch Contact Point (Saklar)
4.Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :

Struktur dasar Relay

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

-Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
-Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.

Arti Pole dan Throw pada Relay

Karena Relay merupakan salah satu jenis dari Saklar, maka istilah Pole dan Throw yang dipakai dalam Saklar juga berlaku pada Relay. Berikut ini adalah penjelasan singkat mengenai Istilah Pole and Throw:
  • Pole : Banyaknya Kontak (Contact) yang dimiliki oleh sebuah relay
  • Throw : Banyaknya kondisi yang dimiliki oleh sebuah Kontak (Contact)
Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :
  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.
Selain Golongan Relay diatas, terdapat juga Relay-relay yang Pole dan Throw-nya melebihi dari 2 (dua). Misalnya 3PDT (Triple Pole Double Throw) ataupun 4PDT (Four Pole Double Throw) dan lain sebagainya.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :
Jenis relay berdasarkan Pole dan Throw
Fungsi-fungsi dan Aplikasi Relay

Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :
  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).
-Diode

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

Dalam ilmu fisika dioda digunakan untuk penyeimbang arah rangkaian elektronika. Elektronika memiliki dua terminal yaitu anoda berarti positif dan katoda berarti negatif. Prinsip kerja dari anode berdasarkan teknologi pertemuan positif dan negative semikonduktor. Sehingga anode dapat menghantarkan arus litrik dari anoda menuju katoda, tetapi tika sebaliknya katoda ke anoda.

Dioda digambarkan seperti sebuah switch/saklar dimana saklar tersebut hanya akan bekerja di beri tegangan atau arah arus sesuai dengan polaritas kaki ioda itu sendiri. Pada arah bias maju, bias kaki anoda diberikan tegangan (+) dan tegangan (-) pada katoda maka dioda akan dapat mengalirkan arus pada satu arah. Sedangkan pada arah arus mundur bias dimana kaki anoda diberi tegangan (-) dan tegangan (+) pada katoda maka saklar menjadi terbuka atau saklar OFF.


-Transitor NPN bipolar

Transistor Bipolar atau nama lainnya adalah transistor dwikutub adalah jenis transistor paling umum di gunakan dalam dunia elektronik. Di dalam transistor ini terdapat 3 lapisan material semikonduktor yang terdiri dari dua lapisan inti, yaitu lapisan P-N-P dan lapisan N-P-N.Transistor tipe NPN adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke emitor.

Transistor bipolar juga memiliki 3 kaki yang masing masing di beri nama Basis (B), Kolektor (K) dan Emiter (E). Perbedaan antara fungsi dan jenis-jenis transisor ini terlihat pada polaritas pemberian tegangan bias dan arah arus listrik yang berlawanan.

Cara kerja transistor bipolar dapat di lihat dari dua dioda yang terminal positif dan negatif selalu berdempet, itu sebabnya pada saat ini terdapat 3 kaki terminal. Perubahan arus listrik dari jumlah kecil dapat menimbulkan efek perubahan arus listrik dalam jumlah besar khususnya pada terminal kolektor. Prinsip kerja ini lah yang mendasari penggunaan transistor sebagai penguat elektronik.

Prinsip kerja transistor PNP adalah arus mengalir dari emitor menuju kolektor. Dibandingkan NPN, pada PNP terjadi hal sebaliknya ketika arus mengalir pada kaki basis, maka transistor tidak bekerja. Arus akan mengalir apabila kaki basis diberi sambungan ke ground (-) hal ini akan menginduksi arus pada kaki emitor ke kolektor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari emitor ke kolektor.

Prinsip kerja transistor NPN adalah arus mengalir dari kolektor menuju emitor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari kolektor ke emitor. Untuk mengalirkan arus tersebut dibutuhkan sambungan ke sumber positif (+) pada kaki basis. Ketika basis diberi tegangan, hingga dititik saturasi, maka akan menginduksi arus dari kaki kolektor ke emitor.

- Battery (Power Supply)

Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya

Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).

Baterai Primer (Baterai Sekali Pakai/Single Use)

Baterai Primer atau Baterai sekali pakai ini merupakan baterai yang paling sering ditemukan di pasaran, hampir semua toko dan supermarket menjualnya. Hal ini dikarenakan penggunaannya yang luas dengan harga yang lebih terjangkau. Baterai jenis ini pada umumnya memberikan tegangan 1,5 Volt dan terdiri dari berbagai jenis ukuran seperti AAA (sangat kecil), AA (kecil) dan C (medium) dan D (besar). Disamping itu, terdapat juga Baterai Primer (sekali pakai) yang berbentuk kotak dengan tegangan 6 Volt ataupun 9 Volt.

Baterai Sekunder (Baterai Isi Ulang/Rechargeable)

Baterai Sekunder adalah jenis baterai yang dapat di isi ulang atau Rechargeable Battery. Pada prinsipnya, cara Baterai Sekunder menghasilkan arus listrik adalah sama dengan Baterai Primer. Hanya saja, Reaksi Kimia pada Baterai Sekunder ini dapat berbalik (Reversible). Pada saat Baterai digunakan dengan menghubungkan beban pada terminal Baterai (discharge), Elektron akan mengalir dari Negatif ke Positif. Sedangkan pada saat Sumber Energi Luar (Charger) dihubungkan ke Baterai Sekunder, elektron akan mengalir dari Positif ke Negatif sehingga terjadi pengisian muatan pada baterai. Jenis-jenis Baterai yang dapat di isi ulang (rechargeable Battery) yang sering kita temukan antara lain seperti Baterai Ni-cd (Nickel-Cadmium), Ni-MH (Nickel-Metal Hydride) dan Li-Ion (Lithium-Ion).

Struktur Battery

elemen baterai

- Generator DC

Generator ialah suatu mesin yang mengubah tenaga mekanis menjadi tenaga listrik. 

Tenaga mekanis : memutar kumparan kawat penghantar dalam medan magnet ataupun sebaliknya memutar magnet diantara kumparan kawat penghantar

Tenaga listrik yang dihasilkan oleh generator tersebut adalah arus searah (DC) atau arus bolak-balik (AC), hal ini tergantung dari susunan atau konstruksi dari generator, serta tergantung dari sistem pengambil arusnya.

Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday :


Dimana:
N = Jumlah Lilitan
0  = Fluksi Magnet
e  = Tegangan Imbas, GGL (Gaya Gerak Listrik)
 

- Motor DC


Motor yang beroperasi pada arus DC disebut sebagai Motor DC dan motor yang menggunakan arus AC disebut sebagai motor AC. Umumnya kamu tidak akan terlalu banyak menjumpai motor AC tetapi motor DC hampir digunakan dimana saja, yang mana di bidang listrik dinamai DC motor.

Motor DC adalah motor listrik yang merupakan perangkat elektromekanis yang menggunakan interaksi medan magnet dan konduktor untuk mengubah energi listrik menjadi energi mekanik putar, dimana motor DC dirancang untuk dijalankan dari sumber daya arus searah (DC). Sudah lebih dari 100 tahun motor DC brush (disikat) digunakan dalam industri serta aplikasi domestik.

Prinsip Kerja Motor DC

Komponen utama dari Motor DC adalah Winding/liltan, Magnet, Rotors, Brushes, Stator dan sumber arus searah (Arus DC). Ketika armature ditempatkan dalam medan magnet yang dihasilkan oleh magnet maka armature diputar dengan menggunakan arus searah, hal ini menghasilkan gaya mekanik. Dengan memanfaatkan putaran motor DC banyak jenis pekerjaan yang dapat dikerjakan.

Gambar-Komponen-Bagian-Motor-DC

5. Gambar Rangkaian [Kembali]





6. Prinsip Kerja [Kembali]

Pada Sensor MQ2, Apabila Sensor MQ-2 mendeteksi adanya asap  maka sensor MQ-2 akan aktif ( berlogika 1 ) dan mengalirkan arus dari pin output sensor MQ-2 ke kaki gerbang AND dan kemudian diteruskan ke kaki base transistor . Pada kaki gerbang AND dihasilkan kan lah output berlogika 1 ini menyebabkan transistor ON dan arus mengalir dari supply ke kaki collector menuju kaki emitter transistor . Sejalan dengan itu, arus juga mengalir pada kumparan (RL1) dan relay pun berpindah yang menyebabkan rangkaian motor menjadi rangkaian tertutup. Battery pun akan menyuplai tegangan sebesar 12 V ke motor DC  hal ini akan menyebabkan motor (berfungsi sebagai tempat keluarnya air)
Sensor MQ2 ini saat aktif juga dihubungkan dengan rangkaian multiplexer sehingga saat sensor aktif maka akan ada tampilan angka 1 pada seven segment yg berfungsi sebagai indikator bahwa sensor MQ2 aktif.
Sedangkan saat sensor tidak mendeteksi asap (berlogika 0) maka tidak akan ada arus yang mengalir sehingga relay tidak menyala dan switch tetap ditempatnya dan pada rangkaian multiplexer saat sensor MQ2 dalam keadaan off maka akan ada tampilan angka 0 pada seven segment yg berfungsi sebagai indikator bahwa sensor MQ2 off.

Ketika flame sensor tidak mendeteksi adanya api maka tidak ada arus yang mengalir logicstate(0). Sehingga tegangan pada gate bernilai kurang dari 0,7 V maka transistor tidak aktif maka arus langsung menuju ke kaki ground. sehingga relay mati karna tidak menerima arus. karna relay off maka motor mati karna tidak mendapat tegangan dari battery. Karna flame sensor terhubung dengan rangkaian multiplexer maka saat sensor dalam keadaan off akan ada tampilan angka 0 pada seven segment.
Ketika Flame sensor mendeteksi api logicstate(1) maka flame sensor akan mengeluarkan tegangan sebesar 5V. Setelah itu mengalir ke gerbang AND kemudian dieruskan ke resistor. Selanjutnya rangkaian menuju transistor, karena tegangan di gate bernilai 0.76 V maka tarnsistor aktif, dengan aktifnya transitor maka akan ada tegangan mengalir dari suplay sebesar 5V menuju relay.Karena adanya tegangan yang melewati relay maka relay aktif, saklar bergerak ke kanan. Sehingga motor akan mendapatklan suplay dari batterai sebesar 5V dan motor akan berputar. Sensor Flame ini saat aktif juga dihubungkan dengan rangkaian multiplexer sehingga saat sensor aktif maka akan ada tampilan angka 2 pada seven segment yg berfungsi sebagai indikator bahwa sensor Flame aktif.

    

7. Video [Kembali]



8. Link Download [Kembali]

Download File Html  Klik disini
Download file rangkaian: Klik disini
Download video simulasi: Klik disini
Download datasheet AND: Klik disini
Download datasheet saklar SW-SPDT: Klik disini
Download datasheet seven segmen: Klik disini
Download datasheet resistor: Klik disini
Download library mq-2: Klik disini
Download library flame sensor: Klik disini